
Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

journal homepage: www.elsevier.com/locate/artmed

Abdominal, multi-organ, auto-contouring method for online adaptive
magnetic resonance guided radiotherapy: An intelligent, multi-level fusion
approach☆

Fan Lianga,b,c, Pengjiang Qiand, Kuan-Hao Sua,b, Atallah Baydoune,f,g, Asha Leissera,b,h,
Steven Van Hedenta,b,i, Jung-Wen Kuoa,b, Kaifa Zhaod, Parag Parikhj, Yonggang Luj,
Bryan J. Traughberb,k,l, Raymond F. Muzic Jra,b,g,m,⁎

a Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
b Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
c Tianjin Key Laboratory of Information Sensing & Intelligent Control, Tianjin University of Technology and Education, Tianjin, China
d School of Digital Media, Jiangnan University, Wuxi, Jiangsu, China
e Department of Internal Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
fDepartment of Internal Medicine, Louis Stokes VA Medical Center, Cleveland, OH, USA
g Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
hDepartment of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
i Department of Radiology, UZ Brussel (VUB), Brussels, Belgium
jDepartment of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
k Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
l Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
mDepartment of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA

A R T I C L E I N F O

Keywords:
Auto-Contouring
Machine learning
Adaptive radiotherapy
Image-guided
Radiotherapy

A B S T R A C T

Background: Manual contouring remains the most laborious task in radiation therapy planning and is a major
barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-
ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal
MR-ART modeled after human brain cognition for manual contouring.
Methods/Materials: Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-
down information is derived from simulation MR images. It grossly delineates the object based on its high-level
information class by transferring the initial planning contours onto daily images. Bottom-up information is
derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-
level pixel features, such as intensity and location, to distinguish each target boundary from the background. The
final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial
intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer
treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included
the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had
144 axial slices of 266× 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index
(HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord.
Results: The average auto-segmentation time was two minutes per set. Visually, the automatic and manual
contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method
alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value.
Conclusion: With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high
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segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI
images for adaptive radiotherapy.

1. Introduction

Adaptive radiation therapy (ART) is a radiation treatment process
that modifies the treatment plan based on patient-specific functional
and anatomic changes during the course of radiation therapy. ART
accounts for the daily geometric variation in patient’s anatomy re-
sulting from patient’s setup, physiological changes, and treatment re-
sponse. ART may enhance the efficacy via enabling high treatment dose
to clinical target volumes (CTVs) while minimizing morbidities by
sparing organs at risk (OARs) [1]. There are three timescales for ART,
i.e. offline between treatments, online immediately prior to a treatment,
and in real time during treatment [2]. During online ART, a plan is
generated for each radiation therapy session based on the image data
acquired immediately prior to the session while the patient is on the
treatment table. On-board imaging is thus required for online ART and
with advanced technology, online, MRI-guided, adaptive radiation
therapy (MR-ART) has been implemented in clinical and research set-
tings [3,4]. Compared to computed tomography-guided ART (CT-ART),
MR-ART provides two, main advantages, i.e. better soft tissue contrast
leading to more accurate anatomical delineation [5,6] and further
sparing of OARs.

Manual contouring, the delineation of CTVs and OARs, remains the
most laborious and time-consuming task in traditional radiation
therapy and is a significant hindrance to ART. Moreover, manual con-
touring is subject to intra- and inter-operator variation. These two
features of manual contouring make it impractical for routine clinical
use in online MR-ART and very difficult in the research setting. In ad-
dition, the waiting time on a treatment table is usually uncomfortable
for many cancer patients who have significant morbidities. Recently
published case series reported the successful implementation of MR-
ART for different abdominopelvic malignancies, using a manual [1] or
interactive segmentation algorithm [7]. Different image registration
techniques do not meet the clinical needs for adaptive radiotherapy and
thus require further manual adjustment of the contours to account for
the daily variations. Therefore, an optimal auto-contouring algorithm
for online MR-ART is needed in order to efficiently generate new con-
tours each treatment day, and thus minimizing the time gap between
image acquisition and the implementation of the corresponding radia-
tion therapy plan.

Currently available, auto-contouring algorithms can generally be
classified into two approaches, i.e. model-free and knowledge-based

methods. Model-free methods are based on the analysis of image con-
tent and properties such as voxel intensities or gradient analysis. These
methods include graph cuts [8], watershed [9], and adaptive thresh-
olding [10] as well as region growing [11]. Model-free methods may
roughly identify the organ boundaries, but are sensitive to image noise
and artifacts [12]. Knowledge-based methods address these limitations
using prior knowledge of the morphology of anatomical structures or
the appearance of organs in different types of imaging modalities in
order to improve the robustness and accuracy of the boundary de-
termination. The knowledge-based methods include three sub-cate-
gories, i.e. atlas-, model-, and machine learning-based methods [13].
Atlas-based segmentation is defined as the process of performing seg-
mentation on a new dataset using the knowledge of prior segmentation,
i.e. a dataset from one or more patients that has the structures of in-
terest already labeled [14]]. Many commercially available software
such as ABAS (CMS-Elekta, Stockholm, Sweden), MIM (MIMVista corp,
Cleveland, OH), and VelocityAI (Velocity Medical Systems, Atlanta,
Georgia) use atlas-based segmentation in adaptive radiotherapy when
based on one re-planning CT acquired during the radiotherapy course
[15]. Disadvantages of this method include the large variation in in-
tensity, contrast medium, and geometry between the atlas and the
image to be segmented which is also subject to significant image arti-
facts and inter-patient differences [16]. Model-based organ delineation
includes prior knowledge of the organ shape combined with organ-
specific parameters, such as intensity range, gradient magnitude, and
direction [17]. However, this method requires two, manual steps, i.e.
close initialization to the target anatomy with its corresponding model
shape according to a drag-and-drop operation and non-rigid manual
deformations [16]. Alternatives to overcoming these undesired prop-
erties include machine learning methods using voxel-based features to
train, for example, neural networks, boosting trees, the support vector
machine (SVM), random forests models or ensembles of classifiers [13]
in order to find tissue boundaries in new data based on the inferred
function determined from the labeled training data. Unfortunately,
these algorithms are generally computationally complex and time-
consuming and impractical for online and real time MR-ART [18].

Inspired by the human contouring processing model, we developed
a novel methodology for auto-contouring that is designed to support
online MR-ART. We couple top-down and bottom-up methods to
achieve a multiple-level, hybrid method integrating low-level features
to object level models in addition to simulating the human fusion

Fig. 1. Schematic representation of the auto-contouring algorithm.
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process. To our knowledge, no such strategy in auto-contouring has
been previously considered. We report the initial results in four ab-
dominal organs and note that our method can be generalized for other
organs. The outline of the algorithm along the clinical procedure
timeline is presented in Fig. 1.

2. Methods/Materials

2.1. MR-ART clinical procedure

Before initiation of radiation therapy treatment, each patient un-
dergoes simulation computed tomography (CT) in accordance with
standard clinical practice. In addition, a simulation MRI is acquired
using the MR-ART platform. CT and MRI images are then transferred to
a third-party software (Pinnacle, version 9.0, Philips Medical Systems,
Madison, WI) for rigid registration and contouring by the treating ra-
diation oncologist. Simulation CT is selected as the primary image for
manual contouring of the CTV and OARs. MRI may be used if needed
for clear visualization of the tumor volume. Contours drawn on simu-
lation CT image are transferred afterwards to the simulation MRI.
Manual editing of these contours will be done, as needed, by the
treating radiation oncologist and used in the rest of the clinical proce-
dure. Online MR-ART is then delivered after acquiring a daily MRI
before each treatment while the patient is on the treatment table.
Contours are transferred to the daily MRI after deformable registration.
One or more physicians, sometimes using a “divide-and-conquer” ap-
proach, compare the on-board, treatment-day MRI to the simulation
images and then attempt to rapidly and accurately adjust the CTV and
OARs while the patient remains on the table. A daily optimized plan is
then generated using new contours while keeping the original CTV dose
and OAR constraints. The MRI sequence used on the simulation and
treatment day is the trueFISP pulse sequence. T1-weighted images are
generated using a TR of 2ms (ms) and a TE of 0.86ms.

2.2. Computational framework

Our method is modeled after the human information processing and

decision-making for contouring. Theoretically, there are three, basic
concepts that underlie human cognition, i.e. granulation, organization,
and causing [19]. Granulation involves decomposition of the whole into
parts, organization involves integration of parts into the whole, and
causing involves the association of causes with effects [19]. Based on
these concepts, we can postulate that the human brain would proceed
by granulation to decompose an image into different organs and by
organization to relate each pixel to a specific organ. In most cases,
human reasoning in manual contouring is guided by prior knowledge
and contours are conceptualized in an indistinct sense.

In order to understand the image context and adjust the boundaries
in complicated clinical scenarios, the software agent will be provided
with prior knowledge regarding the anatomy and appearance of the
organs. With this method two sets of information are integrated, i.e.
granulation-related top-down and organization-related bottom-up. The
top-down information grossly delineates the object boundary based on
high-level information of the object class obtained from rendering the
initial contours to the daily image. The bottom-up information labels
each image pixel as object or background using low-level information
obtained from learning the relationship between pixel values and local
textures according to the manually contoured simulation MRI. As de-
tailed below, the information is then fused in a unified framework using
an artificial intelligence mechanism and toward a more refined seg-
mentation, while simultaneously estimating the pixel-level labeling and
the organ boundary localization.

2.2.1. Top-down pathway
In this part, the simulation-day contours are used as a non-para-

metric organ model reference for daily plan adjustment. The geometric
boundaries of relatively rigid structures, such as the spinal canal, will
be registered for time-saving purposes. In order to reinforce the regis-
tration results, two, feature descriptors are used, i.e. blob-type, Speeded
Up, Robust Features (SURF) [20] and corner-type, Binary, Robust, In-
variant, Scalable key points (BRISK) features [21]. While the local
structural information has a more significant shape context in the
image, multiple pairs are useful when good matches cannot be readily
obtained between simulation and treatment day image sets using a

Fig. 2. Feature-based registration steps. Axial
MR images from (A) simulation, (B): on-board,
treatment-day, (C) extracted matching features
on image B, and (D) registered image using the
RANSAC algorithm. Legend: + Feature points
on the Simulation MRI; o Feature points on the
MRI treatment day; Blue and Yellow contours:
Automatic contours; Green and Red contours:
Ground truth. (For interpretation of the refer-
ences to colour in this figure legend and text,
the reader is referred to the web version of this
article).
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single-feature detector.
The feature-based registration between the contoured simulation

and treatment-day images is done using the following steps: (1) Detect
and extract the matching features between two images; (2) Find mat-
ched features and localize them in individual images; (3) Use the
RANSAC algorithm [22] to estimate the transformation matrix to co-
register image pairs; and (4) Transform the images. The registration
steps are illustrated in Fig. 2. In Fig. 2(D), the blue contour of the liver
and the yellow contour of the right kidney are the results of the auto-
matic top-down method. The green contour of the liver and the yellow
contour of the right kidney are manual contours defined by radiation
oncologist or radiologist on the MR images and labeled as ground truth
to be used as a reference evaluating the automatic contours.

2.2.2. Bottom-up pathway
In this section, we propose a machine learning algorithm for organ

boundary detection. It uses self-adaptive active learning based classi-
fication. The voxelwise, data-driven classification method utilizes low-
level information. A decision of a boundary point is made in-
dependently at each location in the image by automatic recursive se-
lection of the correctly labeled class based on the output of the prob-
abilistic support vector machine (SVM). The details of the proposed
algorithm are listed in the following sections.

2.2.2.1. Problem formulation. Given an image set I, the medical image
contouring task is to determine the boundary, B, of a specific
component of interest, C, that can represent a tumor or a specific
organ in each slice. i and j refers respectively to the row and column
indices of the image matrix. We define theS i j( , )k

C as the function
associated with C that gives 1 if the image voxel (i, j) located in the kth

slice belongs to C and gives 0 if not.

2.2.2.2. Extracting features from MRI. Differing from the top-down
pathway in which high-level information is enlisted, we exclusively
use low-level information for the bottom-up classification. Specifically,
we used two types of features: the low-level image appearance features,
which are of central voxel value, and the 3D location features, which
are three–dimensional, spatial coordinates representing the individual
anatomic location of each voxel. The voxel intensity feature provides
fundamental, low-level contrast information and is widely used for
image segmentation. Since intensity features are often insufficient for
accurate boundary detection because surrounding tissue may have the
same intensity, we added the spatial coordinate of each voxel to depict
the anatomic locations of different target tissues. Finally, the low-level
intensity and the location features of each voxel were combined into
one feature vector for the classification.

2.2.2.3. Probabilistic SVM. Given a training dataset,
= ∈ = …i lX x R{ , 1, , }i

d , the formulation of conventional SVM can be
represented as:
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Then the final classifying decision function of conventional SVM can
be expressed as:

∑= +
=
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i

l
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1 (5)

It is clear that the decision function of the standard SVM in the form
of (5) outputs a specific value rather than a probability. Alternatively,
probabilistic SVM attempts to generate a probability that indicates the
confidence level of a data point belonging to a class. To this end, Platt
scaling [24] is commonly used to give a probabilistic P(y= 1 or−1 | x)
output in terms of the specific decision value of the standard SVM, i.e.
(5). Specifically, it produces the probability estimates:

= =
+ +

y x
Af x B

P( 1 ) 1
1 exp( ( ) ) (6)

in which f(x) is generated by (5) and A and B are two, scalar parameters
estimated by minimizing the negative log likelihood of training data
using their labels and decision values. Complete details of the mathe-
matical estimation have been published elsewhere [24].

2.2.2.4. Self-Adaptive, active learning classification algorithm
(SAALC). Active learning is the process with which a machine
learning algorithm achieves higher accuracy with fewer training
labels than traditional learning approaches via choosing
representative examples from the training set in a recursive fashion to
improve learning efficiency [25]. Conventionally, the active learning
uses human input to validate the segmentation results. Instead, we
introduce the SAALC algorithm which recursively trains the SVM
classifier by gradually including example data points which cannot be
definitively classified with regard to the outputs of the probabilistic
SVM to reduce the uncertainty of the prediction. The fully automatic
active learner attempts to achieve high accuracy using the probability
output of SVM in the training stage, and thereby maximizing the
prediction accuracy in the segmentation testing stage. Details are as
follows.

For every voxel (i, j) in the kth slice in the target MR image, with the
nomenclaturep _ij q

k denoting the probability of the voxel to be classified
into the qth category, we will assign d probabilities corresponding, re-
spectively, to d categories by means of the probabilistic SVM. Here, d
will be set to 2 for a two organ classifier, e.g., the spinal cord and
background, and to 3 for the three organ classifier. The eventual af-
filiation of the voxel is determined by the maximum probability

=p p p p_ max( _ , _ , ..., _ )ij max
k

ij
k

ij
k

ij d
k

1 2 .
Both the contoured simulation and treatment-day images are used

in the SAALC algorithm. Specifically, the training process only uses the
simulation images, the contours defined on the simulated images, and
the treatment-day images. The treatment-day contours are not used for
the training but instead are used for the final performance evaluation.
We first extract the low-level information, i.e., the intensity and the
location features, from the simulation and treatment-day images to
constitute two corresponding MR feature data sets, signified as Is and It,
respectively. Then, the algorithm proceeds stepwise:

1) Randomly select l=2000 examples from each class in Is with labels,
i.e., the voxel subset of any l=2000 voxels from given organs or
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background in the contoured simulation images, to constitute the
initial training set T;

2) Based on the current training set T, use the method of probabilistic
SVM to learn a classifier Cr;

3) For each example in It, i.e., any voxel (i, j) in the kth slice in the
treatment-day image, compute the maximum
probability =p p p p_ max( _ , _ , ..., _ )ij max

k
ij
k

ij
k

ij d
k

1 2 , via the classifier Cr in
step 2), to ascertain which class the voxel most likely belongs to;

4) Compare the p _ij max
k with the threshold τ and obtain the uncertain

subset U from It in which all the calculated maximum probabilities
are smaller than the threshold;

5) Use a 30% sampling ratio to sample the uncertain subset U and get n
uncertain examples;

6) For each of the n uncertain examples in It, use the nearest neighbor
strategy to find a matching example from Is excluding the ones in
the training set T, and we thereby get n new significant examples for
active learning;

7) Update the training set T by adding the just achieved n significant
examples for active learning;

8) Repeat steps 2) – 7) until the desired prediction performance is
obtained;

9) Based on the principle of maximum probability, predict the organ/
tissue class of each voxel in It using the final probabilistic SVM
classifiers obtained using the recursive active learning procedure.

The desired prediction performance in step 8) refers to the case in
which the difference in accuracy prediction between two consecutive
active learning iterations is less than 2%. The threshold τ to find the
uncertain subset U is optimized within the range of 0.55 to 0.65 with a
step size of 0.02, using the grid search. Within this range, the value that
yielded the high classification accuracy is retained.

2.2.3. Fusion process
The process of human reasoning integrates different types of in-

formation for segmentation of organs and tumors. According to that, we
might infer that only the top-down knowledge is useful because it
outputs a global view of multiple organs. However, the top-down
knowledge is not able to capture all the details of the image data due to
the inconsistency of the tumor and organ positions between the radia-
tion treatment sessions. On the other hand, the bottom-up method is
limited by the lack of object-level knowledge especially, for the multi-
organ auto-contouring. In fact, the contours can be refined by adding
the bottom-up approach using low-level cues to integrate learning in-
formation from the previously segmented simulation MRI images, and
thus achieving accurate segmentation for successive treatment-day
images of the same patient. In this context, we fuse both the top-down
and bottom-up information in a way similar to the human reasoning
according to the variation probability of each organ. When we compare
the constancy of each organ location in the different MR images, the
rigid structure with high contrast seems to present less of a challenge
than that of the non-rigid structures. The osseous structure, spinal canal
in this case, is the most consistent one. In contrast, soft-tissue organs
such as liver may vary in size, shape, and position. As for the kidneys,
the predicted respiratory motion effect can be compensated for by
feature-based registration using the top-down method.

In the human understanding and reasoning system, knowledge
could be represented by using verbally formulated rules to form a
natural language expression. The general form is If-Then rules.
Considering the concrete variation property of each organ, we specify
the variable knowledge: spinal canal and kidneys are considered as
rigid and liver is considered as deformable. For the deformable organ,
we use the polar coordination to fuse top-down and bottom-up in-
formation. Before fusion, a five points moving average low-pass fil-
tering was applied to the bottom-up contours. By forming a weighted-
average of the pixels in a neighborhood orientation, high frequency
noise was reduced and the contours were smoothened. We first

compute the center of the mass of the each contour and designate it as
the zero reference coordination. The radii are then selected and com-
bined with regard to the certain angle regarding the coordination from
the bottom-up method result (for example, 0 degrees to 90 degrees) and
the remaining angle from the top-down method result (91 degrees to
359 degrees). Later, the fused radii set is transformed back into
Cartesian coordination.

The if-then fusion rules for each organ boundary using the top-down
method or from the bottom-up method or using the fused one can be
described as follows: 1) If B is of a rigid organ, the top-down result is
selected as the final result. 2) If B is of a deformable organ, then the
fused one is selected as the final result.

2.3. Experiment

For evaluation purpose, we tested our auto-contouring methods on a
dataset of four patients with non-resectable, abdominal malignancies
and who were enrolled in a randomized, controlled, phase II study
(NCT02950025) [26] evaluating MR-ART using a commercially avail-
able MR-ART clinical system (MRIdian, Viewray, Oakwood Village, OH,
USA). Each dataset included the simulation MRI and on-board T1 MRI
corresponding to a randomly selected treatment session. In accordance
with procedures listed in an Institutional Review Board-approved pro-
tocol, data were retrospectively obtained and de-identified by the
treating physician prior to inclusion in our dataset. Each MRI dataset
was composed of 144 image slices and with a resolution of 266×266
pixels. The pixel spacing was 1.5mm×1.5mm within the axial plane
and 3mm between the planes. Four organs were considered, i.e. liver,
right kidney, left kidney, and spinal canal. The ground truth contours
were manually segmented for the four organs and the skin in order to
serve as the background.

The simulation dataset was used as a training set, and each daily
dataset was used as a testing set. Three classifiers were used for each
patient at each day treatment processing. In this experiment, five ca-
tegories were defined: liver, left kidney, right kidney, spinal canal, and
the background. Background was defined as the area limited by the skin
contours excluding the four previously mentioned organ. We arranged
the five classes into three packages for the SVM-based, supervised
classification, i.e. (a) liver, right kidney, and skin, (b) left kidney and
skin, (c) and the spinal canal and skin. The method was implemented
using MATLAB 2016b (The MathWorks, Natick, MA, USA).

We compared the automatically- to the manually-generated con-
tours using two, overlapping metrics, i.e. the Dice similarity index (DSI)
and the Hausdorff distance index (HDI). The DSI has been used to va-
lidate segmentation algorithms in various clinical settings. It computes
twice the fraction of the overlapping area between two contours di-
vided by the union of the areas covered by the contours. A value of 1.0
indicates two contours being in exact agreement. However, the DSI is a
global similarity score and its value is compromised when there is a
significant local difference between segments with relatively small vo-
lume differences [27]. Therefore, we also calculated the HDI which
correlates more accurately with the distance between the two contour
boundaries by accounting for the maximum of all the distances from a
point in the predicted contour to the closest point in the ground-truth
contour [28].

3. Results and discussion

The algorithm starts the training session after the planning manual
contoured images are obtained. In our study, the number of iteration
was set to 3 according to our preliminary evaluation that showed the
difference in accuracy prediction between the second and third active
learning iterations would be less than 2%. Running on an Intel
Xeon®E5-2643 3.40 GHz CPU, 64GB of memory, 64-bit Windows 7
operating system (Microsoft, Redmond, WA, USA), the typical compu-
tation time for one patient in the training stage, i.e. for training three
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classifiers, was approximately two hours. Given trained classifiers, the
average segmentation time of a new image during the daily treatment
session was approximately two minutes.

Fig. 3 displays an axial, T1-weighted MRI with manual and auto-
matically generated contours of the four organs. The manual contours
in this image were drawn by radiation oncologist or radiologist and
labeled as ground truth to be used as a reference evaluating the auto-
matic contours. By visual inspection, the contours are similar to ones
drawn by physicians. The average DSI and HDI are shown in Table 1.
The fused, artificial intelligence method achieved better accuracy than
the bottom-up and top-down methods alone. The bottom-up method
had better DSI for the left kidney, while the top-down method had
better DSI for the right kidney. Among rigid organs, the HDI was higher
using the bottom-up method compared to the top-down method. The
HDI for the liver was higher with the top-down method compared to the
bottom-up method.

The online MR-ART platform combines a radiation delivery to an
advanced MRI acquisition system. The implementation of this hardware
technology for ART in a routine clinical workflow faces the limitation of
a significantly time–consuming, manual contouring task. While manual

segmentation is adequate for defining organs, it remains poor for
yielding consistent, confident distinction of organ boundaries at some
tissue interfaces, even among clinical experts [29]. Compared with an
average of nine minutes with manual contouring [30], our algorithm
represents a solution for the time and accuracy barriers and, therefore,
contributes to the eventual consideration of the use of adaptive radia-
tion therapy.

A DSI above 0.7 usually suggests a good overlap [23]. Except for the
spinal canal, DSI values obtained using this method were above 0.82
and, therefore, our results demonstrate a high accuracy with a minimal
computational time for both soft and rigid organs. In fact, the spinal
canal shape consists of a longitudinal cylinder of small diameter. Owing
to the way the DSI is defined, structures having a high surface area-to-
volume ratio tend to have an inappropriately low DSI. For such struc-
tures, the overlap is better reflected by the HDI which is the lowest for
the spinal canal. As the two kidneys have a similar anatomical shape, it
was thus expected to have similar contouring scores. The score differ-
ence between the two kidneys can be explained, in part, by the local
difference in the anatomical neighborhood and the relative proximity of
the right kidney to the medial liver edges. Due to similar regional tissue

Fig. 3. Abdominal MRI transverse image showing the auto contouring results for liver, kidneys, and spinal canal obtained by the top-down (A) and bottom-up (B),
and the fused top-down and bottom-up (C) methods. Red contours: manual contours used as ground truth. Blue: Auto-contours of liver. Yellow: Auto-contours of
the right kidney. Green: Auto-contours of the left kidney. Cyan: Auto-contours of the spinal canal. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article).
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intensities, multiple shapes, and considerable difference in liver size
throughout treatment, it is difficult for only one method to completely
solve the liver segmentation problem. From the above results, we can
conclude that the bottom-up method was robust, even though the liver’s
shape was variable. In contrast, the top-down method could not get
ideal results in these situations. The reliability of the bottom-up method
can be partially related to computing both the position-oriented in-
tensity information and the intensity information. Moreover, we can
visually ascertain that the boundary between the liver and the right
kidney is difficult to identify using only the bottom-up method because
the features in that area are almost the same for both organs. However,
it is easily detected using the top-down method through the registered
contouring due to its stable property.

From the computational point of view, the current MR image pixel
size and dimension achieve a satisfactory balance between resolution,
accuracy, and computational time. The final step of our proposed
method, just like human thinking, is likely to choose the results from
the top-down method more than the results from the bottom-up
method. Using our machine-learning-based, bottom-up method, our
realization is arguably a more challenging test than the leave-one-out
criterion [31] as one patient simulation MR imaging dataset is exploited
in training and more separate daily patient MR scans for the testing. We
could add more features from the planning day CT in the future for
better supervised learning. Comparative study of the other machine-
learning methods, such as random forest or the boosted probabilistic
trees, could be supplemented with the SVM bottom-up method for
better detail information extraction.

To our knowledge, this is the first fully automated segmentation
approach using T1-weighted MR images for adaptive radiotherapy.
From the technical point of view, our algorithm circumvents the lim-
itation of poor tissue contrast due to image acquisition over a hybrid
MR-ART platform using previous knowledge from planning CT and
MRI. The minimal computational time coupled with high contouring
accuracy makes, at this stage, our method suitable for supplementing
the physician with a quick, automated plan that can be further manu-
ally adjusted while a patient is on board of the radiation therapy
platform. While in this study the combination of low- and high-level
features was only used, our method can be generalized to other imaging
modalities by including mid-level features such as entropy value, Gabor
texture [32], histogram of oriented gradient (HOG) [33] and local
binary pattern (LBP) [34].

4. Conclusion

The clinical validation of a successful automated image segmenta-
tion algorithm is an essential step toward the application of a rapid
workflow in MR-ART. By considering multiple features, our novel al-
gorithm yields a high accuracy in delineating the liver, the kidney, and
the spinal canal on T1 MRI acquired on-board of radiation therapy
platforms. Our method can be implemented for semi-automated seg-
mentation in MR-ART. Future studies should validate small bowel,
stomach, and CTV contouring in order to achieve instantaneous, fully
automated re-planning in abdominal MR-ART.
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